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Abs t rac t  The flee-convection boundary-layer flow on a vertical surface embedded in a porous media 
driven by an exothermic catalytic chemical reaction on the surface is considered. The governing equations 
of this flow are reduced to a pair of coupled, parabolic partial differential equations for the temperature 
and the concentration of the fluid reactant. These equations are governed by the dimensionless chemical 
parameters 2 and ~, which are measures of the reactant consumption and the activation energy, respectively, 
as well as the Lewis number. Similarity solutions are obtained which are valid near the leading edge of the 
surface. Asymptotic solutions, which are valid at large distances downstream from the leading edge, are 
obtained for the two independent situations when 2 = 0 and 2 # 0. A numerical solution to the partial 
differential equations is then obtained. The numerical solution is investigated for a range of the chemical 
parameters 2 and e, and was found to exhibit localized rapid increases in temperature when 2 and e are 
small. Comparisons between the numerical solution and the similarity and asymptotic solutions are made 

and are found to be in good agreement. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Convective flow in a porous media occurs widely in 
natural phenomena and industrial applications, such 
as geothermal energy extraction, oil recovery, food 
processing, casting and welding o f  a manufacturing 
process, the dispersion of  chemical contaminants in 
various processes in the chemical industry and in the 
environment, to name but a few. This topic is of  vital 
importance to these systems, thereby generating the 
need for a full understanding of  this process. A 
detailed review of  the subject, including an exhaustive 
list of  references, was recently performed by Nield and 
Bejan [1]. 

Free convection boundary-layer flow in porous 
media along a vertical flat plate was first considered 
by Cheng and Minkowycz [2], but their analysis has 
since been refined and generalized. In all previous 
studies, it has been assumed that the heat transfer 
process occurs by heating or  cooling the surface of  the 
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plate. However, the free convection boundary-layer 
flow along a vertical surface surrounded by a fluid- 
saturated porous medium driven by a catalytic surface 
heating can be of  importance for the design of  equip- 
ment used in several types of  engineering systems. 
Within the field of  chemical engineering and the petro- 
chemical industries the interaction between chemical 
reaction and free convection occurs widely. Areas of  
research include tubular laboratory reactors, chemical 
vapour deposition systems, the oxidation of  solid 
materials in large containers, the synthesis o f  ceramic 
materials by a self-propagating reaction, combustion 
in underground reservoirs for enhanced oil recovery 
and the reduction of  hazardous combustion products 
using catalytic porous beds, amongst  others. 

The theme of  chemically reactive flow in porous 
media has received relatively little attention until 
recently. Kordylewski and Krajewski [3], and Vil- 
jonen and Hlavacek [4], studied the chemically react- 
ing flow in porous media at low temperatures. The 
premixed combustion in porous media was treated by 
Chen et al. [5], while Hsu et al. [6] studied a similar 
problem using detailed chemical kinetics, and the 
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A 
B 
C 
D 
E 
J; f, F 
9 

reactant species 
product species 
concentration of reactant A 
mass diffusivity 
activation energy of the reactant 
reduced streamfunction profiles 
magnitude of the gravitational 
acceleration 

h reduced concentration profile 
k0 constant 
km effective thermal conductivity of the 

porous medium 
K permeability 
L reaction length scale 
Le Lewis number 
Q heat of reaction 
R universal gas constant 
Ra Rayleigh number 
T temperature 
TR temperature scaling 
u, v non-dimensional velocity components 

along the x- and y-axes, respectively 
UR vertical velocity scaling 
x, y non-dimensional co-ordinates 

perpendicular and normal to the 
surface, respectively. 

NOMENCLATURE 

Greek symbols 
~X m effective thermal diffusivity of the 

7 

qb 

2 
~) 

0 
q~ 

porous medium 
thermal expansion coefficient 
constant 
activation energy parameter 
non-dimensional concentration of the 
reactant A 

similarity variables 
reactant consumption parameter 
kinematic viscosity 
non-dimensional temperature 
non-dimensional streamfunction. 

Subscripts 
w wall condition 
oc ambient condition. 

Superscripts 
dimensional variable 

' differentiation with respect to a 
similarity variable. 

effects of varying the porous material used, the burner 
geometry, and the values of the governing kinetic par- 
ameters. Chao et al. [7] analyzed the nonpremixed 
burning of a condensed fuel in a porous medium with 
a natural convective oxidizer flow adjacent to the wall 
and obtained a solution for the flame temperature, the 
stand-off distance and the mass consumption rate. 
Recently, Chao et al. [8] investigated theoretically the 
heat transfer and reaction characteristics of a chemi- 
cally reactive forced convection flow near the stag- 
nation point of  a catalytic porous bed with finite thick- 
ness. A single-reactant, first-order, one-step Arrhenius 
reaction is assumed to occur. By considering the flow 
in this manner allowed the continuity and momentum 
equations to be decoupled from the energy and species 
equations, so that only the latter need be solved. The 
steady state and initial transient period in the gas 
phase upstream and in the catalytic porous bed were 
investigated using both perturbation and finite- 
difference methods. 

The interaction between the free convection bound- 
ary-layer flow of a pure, viscous fluid near a stagnation 
point and along a heated vertical surface was only 
recently documented by Chaudhary and Merkin [9], 
and Merkin and Chaudhary [10]. According to these 
authors, there is a three-way coupling between fluid 
flow, fluid/surface temperatures and reactant species 

concentration. Thus, the interaction between the 
homogeneous reactions in the bulk of the fluid and 
the heterogeneous reactions occurring on a catalytic 
surface is very complex and, therefore, difficult to 
model. 

In this paper, a theoretical analysis is considered of 
the steady free convection along a vertical flat surface 
embedded in a fluid-saturated porous medium, where 
the flow is driven by catalytic surface heating. The 
model and flow configuration have as their starting 
point the work by Merkin and Chaudhary [10]. We 
assume that the flow in the boundary-layer is driven 
purely by free convection and consider only hetero- 
geneous reactions, i.e. we assume that reaction takes 
place only on the catalytic surface and can be rep- 
resented schematically by the single first-order 
Arrhenius kinetics. Also, the standard Darcy 
Boussinesq approximation is evoked, thereby simpli- 
fying the flow under consideration. The conservation 
equations reduce to a system of two coupled partial 
differential equations for the dimensionless tempera- 
ture and the dimensionless concentration. This pair of 
partial differential equations is characterized by three 
parameters: the reactant consumption parameter, 2, 
the activation energy parameter, e, and the Lewis 
number, Le. First, similarity solutions are obtained, 
which are valid near the leading edge of the surface, 
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and these are then continued downstream by numeri- 
cally solving the full boundary-layer equations, gen- 
erating numerical solutions valid for all possible 
values of ~ and 2. Asymptotic solutions which are 
valid at large distances downstream of the leading 
edge, were then obtained. Throughout this paper the 
Lewis number is consistently taken as unity. 

2. BASIC EQUATIONS 

We consider a catalytic surface, with co-ordinates 
x and )7 measuring the distance parallel and per- 
pendicular to the surface, which is embedded in the 
porous media at an ambient temperature T,~. It is 
assumed, according to Nield and Bejan [1, pp. 34-35] 
and Merkin and Chaudhary [9, 10], that a reaction 
takes place only on the surface, which can be rep- 
resented schematically by a single first-order, exo- 
thermic reaction governed by Arrhenius kinetics, 
namely : 

=0, k ~ = - Q k o C e x p  - 

= k 0 C e x p  - o n y = 0  2 > 0  (7a) 

a ~ O T-~ T~ C ~ C~ asy--+oc  2 > 0  

(7b) 

tT=0 v = 0  T = T ,  C = C ~  o n x = 0  y > 0  

(7c) 

where (a, ~) are the velocity components in the (2, y) 
directions. In equations (3)-(7), g is the magnitude of 
the gravitational acceleration, /3 is the coefficient of 
thermal expansion, Kis the permeability of the porous 
media, v is the kinematic viscosity of the fluid and ~m 
is the effective thermal diffusivity of the porous media. 
We now introduce the following non-dimensional 
variables 

9C ( ~ T )  2 Ra,, 2 (L) t~ Ra,, 2 (Z) A ~ B  D ~ = k 0 C e x p  - (1) x = L  y =  u = ~  v =  

where C is the concentration of the reactant A, T is 
the fluid temperature, B is the product species, D is 
the mass diffusivity, k0 is a known constant, E is the 
activation energy and R is the universal gas constant. 
It is also assumed that no further reaction takes place 
in the fluid-saturated porous media and that at large 
distances from the surface the concentration of the 
reactant A is uniform at a value C,~. Heat is released 
from the surface by the reaction at a rate 

k.,?;~T=~?~ - Q k o C e x p ( - ~ - T )  (2) 

where Q is the heat of reaction and km is the thermal 
conductivity of the porous medium. This heat is taken 
from the surface into the porous media by conduction 
and thus a free convection flow is set up. 

Assuming that the porous medium is isotropic and 
homogeneous and that the fluid is incompressible, 
we invoke the Darcy-Boussinesq approximation to 
obtain the governing equations 

9o 9g 
cx + ~ = 0 (3) 

a = :q~K(T- T,~) (4) 
D 

9T ~T ~2T 

~ C  (~C ~2C 
a ~  +g~-f  = D - -  (6) 

0y 2 

which have to be solved, subject to the appropriate 
boundary conditions, given by 

(T-T,~) C 
0 • = - -  ( 8 )  

TR C~ 

where TR, U R are the scalings for the temperature and 
velocity, L is the 'reaction length scale' and Ra is the 
Rayleigh number, defined as 

RT~ gflKTR 
T~ = ~ ' ~  U R = - -  

E v 

URk~ T 2 ( 2 Z )  pgflKTRL 
L -  2 2 2 exp Ra = 

amQ koCr~ amp 

(9) 

Equation (3) enables a non-dimensional stream- 
function ¢ to be defined such that u = O~/~y and 
v = -&p/~x. Thus, equations (4)-(6) can be written 
in the form 

due 
0 - (10) ay 

9ud90 c~W90 920 
(11) 

t)y c~.x ~?x 0y 0y z 

(~kI'/ 0(1) t~l'I/0(]) 1 (~2(1) 
(12) 

c3y Ox 9x 9y Le (?y2 

where Le = amid is the Lewis number. The boundary 
conditions (7) now become 

(o) 
~ ' = 0  ~ y =  - ~ e x p  

0~ / O \  
2 ~ e x p { ~ ]  o n y = O  x > O  (13a) 

~v \ ,  ±~v) 
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- - - + 0  ~y 0-+0  a sy  --+ oo 

= 0  0 = 0  ¢,=  1 o n x = 0  

x > O  

(13b) 

y > 0 

(13c) 

where 2 and e are a measure of the reactant con- 
sumption and activation energy, respectively, and are 
given by 

kRRT2~ RT~. 
2 - ~ - ( 1 4 )  

QDECo~ E 

3. SOLUTION VALID NEAR TO THE LEADING 
EDGE OF THE CATALYTIC SURFACE, IE SMALL x 

The flow develops initially by heat transfer due to 
a constant wall flux from the surface, which suggests 
the transformation 

I/3 ~J" Y q, = x2 . '~ / (x ,  ~)  o = x ~ -  ¢ = h ( x ,  ~)  ~ = 
off 

(15) 

to obtain a solution of  equations (1 l) and (12) which 
is valid near to the leading edge of the catalytic surface. 
On applying the transformation (15) to equations (11) 
and (12) and their associated boundary conditions 
(13) we obtain 

+ 3 \ a . )  = x \V. e T &  0x &12) 

( 1 6 )  

1 02h 2 f O h =  f S f O h  ~ f~h~  
L T & / ~ + 3  ~r/ x \ ~ x  c?x&l) (17) 

which have to be solved subject to the boundary con- 
ditions 

f =  O, - hexp &/2 

~h 
__ = ;(xl,3hexp 

XI/3 (~J" 
&l 

1 + ex J'3 ~q 

x a~ 1 
. - - , ~  0 f |  o n e = 0  (lSa) 

8~/'--+0 h ~ l  a s t / - , ~ .  (18b) Oq ' 

The form of the boundary conditions (18) suggest 
that the consistent forms of expansion for f (x ,  t/) and 
h(x, rl) are 

J(X, rl) = f o ( r l ) + x l / 3 f l ( r l ) 4 -  . . .  (19a) 

h(x, tl) = ho(tl)+ x~"3h,(tl)+ . . .  (19b) 

where at the leading order, O(xl/3) °, the coefficient 
functions satisfy the ordinary differential equations 

2 , 1 1 2 
.fT + ~.[o.f',;- .~(f;)2 = o, Ueh',; + ~ J;h;  = 0 

(20a) 

which have to be solved subject to the boundary con- 
ditions 

./i,(O) = O, fg  (0) = - h0 (0), h; (0) = O, 

.f'0(oo) = 0, h0(~)  = I. (20b) 

At the second-order, O (x ~/3)~, the coefficient functions 
satisfy the ordinary differential equations 

2 ,, 
f a ' +  _~ J0.f,-f{~./"l +f~;f'~ +f~J ,  = 0 

l h ,  , 2 1 
Le  ' + ~Jl, h] - ~foh,  +f,  hl = 0 (21a) 

which have to be solved subject to the boundary con- 
ditions 

.l; (0) = 0 .f"; (0) = - h, (0) - ho (O).f; (0) 

h'~(0) = 2h0(0)f'~(c~) = 0 h,(oo) = 0 (21b) 

where the primes used denote differentiation with 
respect to r/. The equation for h0 has only the trivial 
solution 

h0(t/) = 1. (22) 

On considering equation (22), equation (20a) for f0 is 
now in the form satisfying the standard free con- 
vection problem for constant wall heat flux, which is 
well documented in the literature [11-13]. Thus, from 
Rees and Pop [12], we have 

.[~(0) = 1.29618. (23) 

At the second-order, O(xL/3) ~, we write 

J]=( fo (O)+) .h , (O) ) f~ ( t l )  h, = Z/~, (t/) (24) 

to eliminate 2 from equation (21). On applying trans- 
formation (24) to equation (21a) and their associated 
boundary conditions (21 b) we obtain 

2 ~ 
+.t0f, 0 f ' ,"+ ~./i,./"f -.f{,]'q +.1'o.7~'; " " = 

I . 2 - 1 - 

Leh~; + ~.[~h'~ - ~J'~,h, = 0 (25a) 

which have to be solved subject to the boundary con- 
ditions 

. L ( o ) = o  f ' ; ( o ) = - I  h ~ ( 0 ) = l  

f~ (c~) = 0 /~, (m) = 0. (25b) 

Thus, from equations (15), (19) and (24), we can 
obtain expressions for the dimensionless wall tem- 
perature, O(x, 0) = 0w(X) and the dimensionless sur- 
face concentration, @(x, 0) = @,~(x), in the form 
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0w(X) = x '~'3 {f 'o(O)+ x'  3(f'o(O) 

+,t/~,(0))./>; (0) + . . . }  (26a) 

qbw(X) = 1 + /~  (0)2x '3  + . . . .  (26b) 

On solving numerically equations (25), utilizing the 
N A G  routine D02GAF,  for the case when Le is taken 
as unity, we can determine the values o f ] i ( 0 )  and 
/~(0). A value for./~,(0) was also determined, by solv- 
ing equations (20) and this was found to be in agree- 
ment with the value given in relation (23), as deter- 
mined in [12]. It now follows from equations (10) 
(13) that. for the case when Le = 1, 

@(x,y) = 1--20(x,y) .  (27) 

In this case, equations (19) and (27) give 
/7~ (0) = -/{~(0) so that the expressions (26), together 
with the numerical results forfi~ (0) and] i  (0) become 

Ow(x) = 1.29618x ~ :~{1 +0.73429x'  3(1 - 2 ) +  . . .} 

(28a) 

@w(X) = 1-0.73429).x ~:~ + . . .  (28b) 

which are only valid for cases where x << 1. 

4. SOLUTION VALID FAR FROM THE LEADING 
EDGE OF THE CATALYTIC SURFACE, IE 

LARGE x 

Taking the values of  the reactant consumption par- 
ameter as 2 = 0 (e. # 0) or ,t # 0 in equations (16)-  
(18) leads to two essentially distinct types o f  asymp- 
totic behaviours. It is this aspect that we next discuss, 
starting with the asymptotic solution for the case when 
2 = 0 .  

4.1. Reactant consumption neglected, 2 = O, ~ ¢ 0 
On taking 2 = 0, i.e. equation (27) implies that 

qb(x, y) - 1, we can see that  the transformation vari- 
ables (15) are again appropr ia te  to deal with equations 
(10)-(13), in order to obtain a solution valid for large 
x. The form of the boundary conditions (18) suggest 
that the consistent form of  expansion for.[(x, q) is 

./(x, q) =.j~, (q) + x-':3.f~ (q) + . . .  (29) 

where at the leading order, O(x-~/3) °, the coefficient 
functions satisfy the ordinary differential equations 

+~[o f 0 - ~ ( f 0 )  = 0 (30a) 

which have to be solved subject to the boundary con- 
ditions 

j ~ , ( 0 ) = 0  . / " , ' , ( 0 ) = - - e x p ( ! ) j ~ , ( o c , ) = 0 .  (30b) 

At  the second order, O(x  ,3),, the coefficient func- 
tions satisfy the ordinary differential equations 

j ;"+~j; ,)~"/- '~igj"~ + ; J ' g Z  = 0 (31a) 

j l  (0) = 0 j"~(0) = ~ e x p  [ j ' 0 (0) l - '  .?] (oo) = 0 

(31b) 

where the primes denote differentiation with respect 
to q. To simplify the form of  the boundary conditions 
(30b) and (31b) we introduce uniform wall heat-flux 
variables of the form : 

/ l \ V , 3  _ 

/ 1 \ \  , , 3  
' I ; ) )  f,,o  '/~' = 17 exp 

-- (exp ( t~1  r,,.~ (32) 

which has the effect of  leaving the form of equations 
(30a) and (31a) unchanged, whilst the boundary con- 
ditions (30b) and (31b) now become 

~ ( 0 ) = 0  . f ~ ( O ) = - I  . / ' ~ ( ~ 1 = 0  (33a) 

.7~(0) = 0 .fl'~(O) = [ fg(o) ]  -~ f i ( ~ )  = 0 (33b) 

where the primes now denote differentiation with 
respect to r/. Expressions for the dimensionless wall 
temperature and the dimensionless surface con- 
centration are now obtained from equations ( 15), (29) 
and (32), in the form 

ow  ,=x :3 

x {j~)(0)q_~ (0)(exp (~))-2 3 8- 2.v 1,3 ~_ ...} 

(34a) 

¢,.,(x) - 1. (34b) 

On numerically solving equations (30a) and (31a), 
subject to the boundary  conditions (33), again by 
implementing the N A G  routine D 0 2 G A F  for the 
case when Le = 1, values for] '0 (0) and f ]  (0) were ob- 
tained. As a result of  this, expression (34) is now to 
be expressed as 

x.  1.29618-0.85333 exp e 2x , . 3 + . . .  

(35a) 

¢,,(x)  --- 1 (35b) 

which are only valid for cases where x >> 1, and do 
not hold for cases where ~: = 0. 
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4.2. Reactant consumption included, 2 # 0 
For the case when 2 ¢ 0, we assume that the dimen- 

sionless wall temperature, 0w, approaches a constant 
value and that the dimensionless surface concen- 
tration, Ow, tends towards zero as the distance along 
the surface, x, tends towards infinity. To this end the 
transformation variables (15), previously applied to 
equations (10)-(13), are dropped in favour ofa  trans- 
tbrmation reflecting the development of the flow away 
from the leading edge of the surface, influenced by 
convection. The suggested transformation is of the 
form 

OF v 
O=x '~F(x ,~ )  0 = ~  O = O ( x , f )  f = x i . z "  

(36) 

On applying the transformation (37) to equations (11) 
and (12) and their associated boundary conditions 
(13) we obtain 

O3F 1 ~2F fc~F ~2F 8FOZF) 
~f3 + 2 F c~-  = x t~  ~ ~ 8x ~,f2 ] (37) 

1 ~20 1 80 fOFO0 ~F~q~ 
- - - -  = x - -  ~ ) ( 3 8 )  

which have to be solved subject to the boundary 
conditions 

F =  0, 

8O I/2 - - X  

~ x  = - O e x p  

= 2Oexp ?'f on ~ = 0 (39a) 
? , F |  " l+~J 

OF 
----*0,  4)--+1 a s f ~ o c .  (39b) 0~ 

The form of the boundary conditions (39) suggest 
that the consistent forms of expansion for F(x, ~) and 
O(x, f) are 

F(x, f) = F o (~) + x-'"2 Fl (~) -b . . .  (40a) 

O(x ,~)=O0(~)+x  ~ ' 2 0 , ( 0 + . . .  (40b) 

where at the leading order, O(x-1,,2)0, the coefficient 
functions satisfy the ordinary differential equations 

1 ,, 1 1 
F[;'+~F~Fo = 0  O~+ ~FoO[~ = 0  (41a) 

which have to be solved subject to the boundary con- 
ditions 

Fo(0) = 0  O0(0 )=0  F ; ( o o ) = 0  O0(oo ) = 1 

(41b) 

where the primes used denote differentiation with 
respect to ~. Equation (41a) is the classical equation 
for the free convection boundary-layer flow on an 
isothermal vertical plate embedded in porous media, 
as described in ref. [2]. At this stage of the analysis 
the form of the boundary conditions (39a) make a 
value for Fg(0) indeterminable, due to the repeated 
boundary condition for O0(0) and, therefore, we now 
consider the ordinary differential equations which the 
coefficient functions of equation (40) satisfies at the 
second-order, O(x-~2) ~, namely the equations 

1 1 
F'~" + ~ t:oF'( + ~ F'oF ~ = 0 

1 l 1 
~-eeO'f+~FoO]+~FoOt = 0  (42a) 

which have to be solved subject to the boundary 
conditions 

, ( - F{ ,  ( 0 )  

F , ( 0 ) = 0  O, (O)=- -F ; (O)exP~l  

(. 
O, (0) = 2 ' O; (0) exp \ 1 + ~F',, (0)] 

F] (oo) = 0 O, (oc) = 0. (42b) 

Now to ensure consistency between the boundary con- 
ditions (42b), we enforce the condition 

ZF; (0) + O; (0) = 0 (43) 

and likewise for consistency between the boundary 
conditions (39a) at O(x-  i/2)2, we enforce the condition 

2F'~(0) +O~ (0) = 0. (44) 

Equations (43) and (44) now complete the sets of 
boundary conditions for the leading order and the 
second-order ordinary differential equations, given by 
equations (41a) and (42a), respectively. As before, we 
now introduce a transformation, to simplify the form 
of boundary conditions (42b), of the form 

Fo =(2) '"2F0(~) O0 = +0(~) F, =(2)-27F,(~) 

O, =(2) 3'27~,(~ ) ~ = ( 2 ) , , 2 f  (45) 

where ? is a constant given by 

= e x p ( -  F~,(~ "~ 
1 + e,F{, ( 0 ) )  ( 4 6 )  7 

On applying the transformation (45) to equations 
(41a) and (42a) and their associated boundary con- 
ditions we obtain 

- -  1 _ _ I - , ,  1 _ - 

Ff;'+ ~FoFg = 0 ~-eeO0+ 7F00{> = 0 (47a) 

which have to be solved subject to the boundary con- 
ditions 
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and 

fo(O) = 0 q~0 (0)  = 0 F'; (0)  + q~; (0)  = 0 

F ~ ( ~ )  = 0 q)0(oc) = 1 (47b) 

- 1 _  _ 1 _  _ 
F'," + ~ FoFT + ~ F;,F~ = 0 

1 _ I _ _  1 _ _  
~ee@'~ + ~ FoO'~ + ~F~)O, = 0 (48a) 

which have to be solved subject to the boundary con- 
ditions 

f , (0 )  = 0 0 , ( 0 )  = O0(0) ~ ; ( 0 ) + $ ~ ( 0 )  = 0 

F](c~) = 0 q)~(~) = 0 (48b) 

where the primes now denote differentiation with 
respect to ~. Expressions for the dimensionless wall 
temperature and the dimensionless surface con- 
centration are now obtained from equations (36), (40) 
and (45), in the form 

O~(x) = (;0 ' {F ; (0 )  + F;  (0 )0 )  -~"-' 

x e x p (  fi0(0) '~ ~2 
2 ~ o ) ) X  .... + . . . }  (49a) 

Ow(X)  = ( i )o (O)( i )  3:2 

( - 2 F ; ( O )  '~ _,~ 
~ 0 ) )  x '- + . . . .  (49b) x exp 

On numerically solving equations (47a) and (48a) sub- 
ject to the boundary conditions (47b) and (48b), 
respectively, again by implementing the N A G  routine 
D 0 2 G A F  for the case when Le = 1, values for F o (0), 
q);(0) and F] (0) were obtained. For this case it can 
be noted, as described in ref. [2], that F~(0) -= 1 and 
that F] (0) -= -q~;(0) .  As a result of  this, expression 
(49) is now expressed as 

Ow(x) = (2) - j  {1 --0.44375(2) -3:2 

x e x p ( - ~ + e , ) x ~ " 2 + . . . }  (50a) 

f ~ 1 x Ow(X) = 0 . 4 4 3 7 5 ( 2 ) 3 " 2 e x p ~ - ~ ]  --',2_j_ 

(50b) 

which are only valid for cases where x >> l, and do 
not hold for the cases where 2 = 0, as discussed in 
Section 3.1. As initially assumed at the beginning of 
this section it is clear from equations (50) that the 
dimensionless wall temperature tends towards a con- 
stant value, i.e. 0w(X)-+(2) -a and that the dimen- 
sionless surface concentration tends towards zero, i.e. 
O~(x) --* 0, as x --* ~ .  

5. NUMERICAL SOLUTION 

The dimensionless wall temperature and the dimen- 
sionless surface concentration solutions which are 
valid near to and far from the leading edge of the 
catalytic surface, as derived in Sections 3 and 4, respec- 
tively, are now complemented by a numerical solution 
of the governing equations (10) (13), thereby pro- 
viding a smooth transition between the similarity and 
asymptotic solutions. 

In Section 3, we found that the solution which is 
valid near to the leading edge of the catalytic surface 
developed in powers o fx  1/3 and, therefore, there exists 
a singularity at the leading edge of the surface, i.e. at 
x = 0. A similar problem was solved numerically by 
Mahmood and Merkin [8], where they proposed the 
use of a finite-difference scheme, where the solution 
near to the singularity is used as the initial solution 
for the numerical scheme. The method used in this 
paper is similar to that suggested in ref. [8], and is 
applied to equations (11) and (12) with modifications 
made to account for the associated derivative bound- 
ary conditions (13a). To remove the singularity 
experienced at x = 0, we introduce the variable ~, 
which is related to x by the expression ~ = x ~ and all 
the graphical results presented are displayed in terms 
of this new variable ~. As in Section 4, we now inde- 
pendently discuss the implications of the cases when 
there is no reactant consumption, )v = 0, and when the 
reactant consumption is included, ). # 0. 

5. I. Reactant consumption neglected, ). = 0 
In this section, we will investigate the behaviour of 

the numerical solution when 2 = 0 for a range of 
values ofe.. As seen in Section 4.1, taking 2 = 0 implies 
that the dimensionless surface concentration remains 
at its ambient value, i.e. O~. _-- 1, along the entire 
surface. The numerical solution for the dimensionless 
wall temperature was obtained for e = 0.0, 0.1, 0.2 
and 0.3, with the results displayed in Fig. l(a). We 
note that the behaviour of the solutions, for all values 
of e considered, suggest that as ~ --* oc (x --* oo) that 
the solutions do not approach constant values, but 
instead increase unbounded towards an infinite wall 
temperature. We also note that all the solutions exhi- 
bit a two-phase behaviour. The initial reaction phase 
starts at the ambient temperature extending along the 
surface away from the leading edge, progressing at a 
slow rate of increase in the temperature as we move 
along the surface. This behaviour continues, until at 
a finite distance along the surface, the rate of increase 
in the temperature rises sharply. 

On considering the dimensionless temperature pro- 
files for the case when 2 = e = 0.0, shown in Fig. 1 (b), 
at various locations along the surface, 4, as a function 
of the scaled distance away from the surface, r/, the 
transition is further demonstrated. Through the work 
in Sections 3 and 4, we have found that 1/= 14.0 is 
the finite distance away from the surface that gives a 
very good approximation to an infinite distance away 



18 B.J. MINTO et al. 

10 

9 

8 

7 

6 

4 

3 

2 

I 

0 

- (a )  

0.2  0.4 0.6 

- / ,  

:" s l  • : / - -  0 
/ ,,.z 'r "" 0.1 

/ , "  J . . . .  0.2 
.." ~ / ' J  0,3 

.." ¢ s 

0.8 1~2 11.4 1,6 1.8 
I 

1.0 210 

10 - ( b )  0 . 7 2  

9 - - - -  0 . 7 1  

8 ~ - -  0 . 7 0  

7 A- - - - -  0 . 6 5  

6 . . . . . . . . .  0 . 6 0  K" 
@5 

4 

3 

2 

I 

0 0 .2  0 .4  0 .6  0.8 1.0 i .2 1.4 1.6 1.8 2.0 

Fig. 1. (a) Graph of the dimensionless wall temperature 0w plotted against ( = .v ]'~ for ~. - 0.0, e = 0.0, 0.1, 
0.2 and 0.3; (b) graph of the dimensionless temperature profiles 0(~,q) plotted against t/ for ). = 0.0, 

e = 0.0, at several locations along the surface ~ = 0.60, 0.65 0.70, 0.71 and 0.72. 

from the surface. Figure l (b)  has been t runcated  at  
q = 2.0 in order  to clearly demons t ra te  the behaviour  
of  the numerical  solut ion at  small distances f rom the 
surface. 

In Fig. l (b)  we can see the sudden change in the 
dimensionless wall tempera ture  as we move between 

= 0.65 and 0.70 along the surface, thereby indicat ing 
the t ransi t ional  region. Due to the Arrhenius  kinetic 
model  evoked in this paper,  the rate of  increase in the 
tempera ture  correlates to an increase in the react ion 
rate, i.e. there is a t rans i t ion from a slow react ion at 
low temperatures  to a more  vigorous react ion at  
higher temperatures.  The characterist ics of  this t ran-  
sition phase are heavily dependent  upon  the value of 
r considered. F r o m  Fig. 1 (a) we can see tha t  increasing 
the value of  ~- has  the effect of  increasing the value of  

at which the t ransi t ion begins to occur and  also of 
limiting the rate of  the tempera ture  increase dur ing 
the second phase. These features lead us to expect 
that ,  for a large enough value of  e, we would be unable  
to identify a t ransi t ion period in the result ing smooth  
numerical  solution. 

5.2. Reactant consumption included, 2 v~ 0 
When  reactant  consumpt ion  is included in the prob-  

lem, we investigate the effect upon  the numerical  solu- 
t ions of  varying one of  the chemical parameters ,  ,~ or 

e, whilst main ta in ing  the other  pa ramete r  at  a cons tan t  
value. The first case considered is where we fix ~, = 0.2 
and  take )~ = 0.05, 0.1 and  0.2, The numerical  solu- 
t ions for the dimensionless wall tempera ture  and  the 
dimensionless surface concent ra t ion  are shown in Fig. 
2(a, b), respectively. 

As stated in equa t ion  (27), it is worthwhile  not ing 
at this stage to the relat ionship between the dimen- 
sionless wall t empera ture  and  the dimensionless sur- 
face concentra t ion ,  for the case when Le = 1, i.e. 
qbw = 1 --).0~. In Fig. 2(a), we observe tha t  there exists 
a similar behaviour  to tha t  seen in Section 4.1. The 
numerical  solutions for the dimensionless wall tem- 
perature  exhibit  the same two-phase  behaviour ,  but  
instead of the tempera ture  increasing indefinitely we 
see tha t  at a finite distance along the surface tha t  a 
third phase develops where the rate of  increase in 
the tempera ture  decreases and  the dimensionless wall 
t empera ture  approaches  an asymptot ic  limit given by 
2 ~. Cor responding  to this the dimensionless surface 
concent ra t ion  solutions,  shown in Fig. 2(b), initially 
decrease rapidly away from the leading edge from the 
ambien t  concentra t ion ,  qbw = 1, and  eventually decays 
to 0. These observat ions  are in agreement  with those 
made in Section 4.1, and  we will investigate these 
correlat ions fur ther  in Section 6. We also note  tha t  
for e = 0.2 tha t  the rate at  which the concent ra t ion  
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decreases has only a small dependence upon the value 
of  2. 

We now investigate whether this observation holds 
when a larger range of  values of  2 is used, when 

= 0.0. We have calculated the numerical solutions 
when 2 = 0.2, 0.5 and 1.0, with the results obtained 
are shown in Fig. 3. We again note that the asymptotic 
states which the dimensionless wall temperature solu- 
tions approach, as ~ --+ oo, are given by 2 ~ and that 
the dimensionless surface concentration solutions 
decay to 0. For  2 = 0.5 and 1.0 the rate of  increase of  
the wall temperature and consequent decrease in the 
surface concentration is less pronounced than the 
solutions shown in Fig. 2. 

We now consider the effect upon the numerical solu- 
tions for the dimensionless wall temperature and the 
dimensionless surface concentration of  fixing the 
value of  2 at 0.2 and taking ~ = 0.0, 0.05, 0.1 and 0,2. 
The results for these cases are presented in Fig. 4. We 
observe that the numerical solutions for the dimen- 
sionless wall temperature and the dimensionless 
surface concentration approach the same asymptotic 
limits as ~ ~ oo, given by 2 ~ and 0, respectively. 
In reference to equation (27), we observe how the 
solutions for the dimensionless wall temperature, as 
shown in Fig. 4(a), are 'mirrored '  in the solutions for 

the dimensionless surface concentration, as shown in 
Fig. 4(b). The effects of  varying the value of  E on the 
solutions for the dimensionless wall temperature in 
Fig. 4(a), are similar to those seen in Section 4.1, Fig. 
1 (a). In Section 4.1 we saw that decreasing the value of  
e, leads to a greater increase in the rate of  temperature 
increase after the initial slow development of  the reac- 
tion. This observation is also applicable to Fig. 4(b), 
where the smaller the value o fe  the faster the reactant 
is depleted as we travel along the surface. 

F rom the results presented in this section, we have 
seen that the smaller the value of  e, then the higher 
are the rate of  increase and decrease of  the dimen- 
sionless wall temperature and the dimensionless sur- 
face concentration, respectively, after the initial phase 
of  the reaction at low temperatures. This behaviour 
of  a rapid change, for small values of  e, can be reduced 
by increasing the value of  2, see Fig. 3, leading to a 
smoother transition between the initial reaction phase 
and the subsequent reaction phases. 

6. COMPARISON BETWEEN SOLUTIONS 

Finally, we now compare the similarity and asymp- 
totic solutions, as derived in Sections 3 and 4, respec- 
tively, with the numerical solutions obtained in Sec- 
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tion 5. Again  we start  by considering the case when  
no reac tant  is consumed dur ing the progression of  the 
reaction. 

6.1. Reactant consumption neglected, 2 = 0, c, ¢ 0 
In this section, no compar ison  is found between 

the dimensionless surface concentra t ions ,  since all the 
solutions,  namely similarity, asymptot ic  and  numeri-  
cal, all re turn a cons tan t  value of  1, the value of  
the ambien t  concentra t ion .  Due to the na ture  of the 
asymptot ic  solutions derived in Section 4.1, we only 
need to compare  the dimensionless wall t empera ture  
solutions for one specific case, since no solution which 
is valid for x >> 1, when bo th  2 = 0.0 and  e = 0.0, 
was derived. In order  to i l lustrate the accuracy of  the 
numerical  solution we now compare  the solutions for 
the dimensionless wall tempera ture  when  2 = 0.0 and 

= 1.0, with similar good compar isons  being found 
for o ther  values ofe  ¢ 0. The  results are shown in Fig. 
5, where logari thmic scalings have been used to make  
for a clearer compar ison.  Clearly we observe tha t  the 
solutions are comparable  in the regions were a cor- 
relat ion between the solutions was expected. The simi- 
larity solution,  which is valid for x << 1, is in close 
agreement  with the numerical  solut ion for x < 0.1, 
with bo th  solutions tending to 0 as x ~ 0, and  the 

asymptot ic  solution,  valid for x >> 1, agrees well with 
the numerical  solution for x > 10 and as can be seen 
by compar ing  the results in Fig. l (a)  and equa t ion  
(35a), for the numerical  and  asymptot ic  solutions,  
respectively ; bo th  solutions become linear in x as x 
OC. 

6.2. Reactant consumption included, ;~ ~ 0 
We now make  the compar i son  between solutions 

for the case when  2 = 0.1 and  c, = 0.2, with  similar 
good compar isons  found for o ther  combina t ions  of  
values of  2 and  ~. The results for the dimensionless 
wall t empera ture  and  the dimensionless  surface con- 
cent ra t ion  solutions are shown in Fig. 6(a, b), respec- 
tively. For  this compar i son  a logar i thmic scaling was 
only used to scale the x values, thereby producing  a 
clear picture of  the solutions '  behaviour .  Clearly in 
Fig. 6(a, b), there are definite correlat ions between the 
similarity and  numerical  solutions for x < 0.01 and 
between the asymptot ic  and  numerical  solutions for 
x > 100. For  this case, where the react ion consumes 
reactant  as it progresses a long the surface bo th  the 
dimensionless wall tempera ture  and  the dimensionless  
surface concent ra t ion  solutions have steady state solu- 
t ions at  bo th  limits of  the plate, i.e. at x = 0 and  
x = oo, given by : 
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0w(0) = 0 ,  O w ( 0 )  = l ,  

0~(~ )  = : . - ' ,  o w ( ~ )  = 0. (51) 

These  s teady  state  so lu t ions  are  clearly a t t a ined  by all 
the solut ions ,  whe re  appl icable ,  as d e m o n s t r a t e d  in 
Fig. 6(a, b). 

7. DISCUSSION 

The  f ree -convec t ion  b o u n d a r y - l a y e r  f low on  a semi- 
infinite,  vert ical  catalyt ic  surface  which  is e m b e d d e d  

in a p o r o u s  media ,  dr iven  by an  exo the rmic  reac t ion  
on  the  surface,  has  been  cons idered .  Init ial ly the  reac-  
t ion occurs  on  the  surface,  wi th  the  hea t  genera ted  

being c o n d u c t e d  away  into  the  s u r r o u n d i n g  fluid. This  
results  in a na tu ra l  convec t ive  f low wi th in  the  p o r o u s  
media ,  which  inf luences the  t e m p e r a t u r e  o f  the  surface  
and ,  hence,  the  p rog res s ion  o f  the  react ion.  This  mech-  
an i sm in tu rn  con t ro l s  the  rate  o f  r eac tan t  c o n s u m p -  
t ion,  whils t  the  convec t ive  f low in t roduces  m o r e  reac-  
tan t  to the  surface d r a w n  f rom the  s u r r o u n d i n g  fluid. 
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The reaction has been modelled as first-order exo- 
thermic reaction using Arrhenius kinetics. The Darcy-  
Boussinesq approximation has been invoked, which 
had the advantage of simplifying the flow under con- 
sideration. By assuming the validity of the boundary- 
layer approximation, it was found that the tem- 
perature of the system and the concentration of the 
reactant could be modelled by solving a pair of 
coupled, parabolic partial differential equations sub- 
ject to the associated boundary  conditions. 

Similarity solutions for the dimensionless wall tem- 
perature and surface concentration were obtained 
which are valid near to the leading edge of the catalytic 
surface. These were complemented by asymptotic 
solutions for the dimensionless wall temperature and 
surface concentration which are valid far from the 
leading edge of the catalytic surface. Two distinct 
sets of asymptotic solutions were obtained for two 
independent cases, namely when the reactant con- 
sumption was neglected and when the reactant con- 
sumption was included. 

The full numerical solutions of the governing partial 
differential equations exhibited a behaviour which is 
strongly dependent upon the values of the chemical 
parameters )+ and e,. It was seen for the case when 
2 = 0.0 that the numerical solution has a two-phase 
behaviour comprising of an initial slow reactive state 

occurring at low temperatures followed by a period 
of transition to a more reactive state occurring at 
higher temperatures with reaction progress indefi- 
nitely leading to an infinite wall temperature. For  the 
cases when temperature 2 =~ 0 this two-phase behav- 
iour was limited by another period of transition where 
the rate of reaction decreased and the temperature 
attained a steady state, given by )+t, due to the 
depletion of the reactant. The changes occurring 
between these phases were less distinct when higher 
values oft: and/or 2 are used in generating the numeri- 
cal solutions. 

These numerical solutions were then compared to 
the similarity and asymptotic solutions, where appli- 
cable, and regions of agreement between the solutions 
were located for the cases considered. Within these 
limits the similarity and asymptotic solutions, where 
applicable, should be used, with the numerical solu- 
tion used between these limits when attempting to 
generate a solution to the problem discussed herein. 
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